Author Topic: Discovered: Stars as Cool as the Human Body  (Read 1171 times)

Offline Conrad

  • Hero Member
  • *****
  • Posts: 5822
  • Country: us
Discovered: Stars as Cool as the Human Body
« on: August 24, 2011, 11:30:37 AM »
http://science.nasa.gov/science-news/science-at-nasa/2011/23aug_coldeststars/

August 24, 2011: Scientists using data from NASA's Wide-field Infrared Survey Explorer (WISE) have discovered six "Y dwarfs"-- star-like bodies with temperatures as cool as the human body.

Astronomers hunted these dark orbs for more than a decade without success. When viewed with a visible-light telescope, they are nearly impossible to see. WISE's infrared vision allowed the telescope to finally spot the faint glow of a half dozen Y dwarfs relatively close to our sun, within a distance of about 40 light-years.

"WISE scanned the entire sky for these and other objects, and was able to spot their feeble light with its highly sensitive infrared vision," says Jon Morse, Astrophysics Division director at NASA Headquarters in Washington.

The Y's are the coldest members of the brown dwarf family. Brown dwarfs are sometimes referred to as "failed" stars. They are too low in mass to fuse atoms at their cores and thus don't burn with the fires that keep stars like our sun shining steadily for billions of years. Instead, these objects cool and fade with time, until what little light they do emit is at infrared wavelengths. The atmospheres of brown dwarfs are similar to those of gas giant planets like Jupiter, but they are easier to observe because they are alone in space, away from the blinding light of a parent star.

So far, WISE data have revealed 100 new brown dwarfs.  Of these, six are classified as cool Y's. One of the Y dwarfs, called WISE 1828+2650, is the record holder for the coldest brown dwarf with an estimated atmospheric temperature cooler than room temperature, or less than 80 degrees Fahrenheit (25 degrees Celsius).


Reigning Title-Holder for Coldest Brown Dwarf
NASA's Wide-field Infrared Survey Explorer, or WISE, has uncovered the coldest brown dwarf known so far (green dot in very center of this infrared image). Called WISE 1828+2650, this chilly star-like body isn't even as warm as a human body, at less than about 80 degrees Fahrenheit (25 degrees Celsius). Like other brown dwarfs, it began life like a star, collapsing under its own weight into a dense ball of gas. But, unlike a star, it didn't have enough mass to fuse atoms at its core, and shine steadily with starlight. Instead, it has continued to cool and fade since its birth, and now gives off only a feeble amount of infrared light. WISE's highly sensitive infrared detectors were able to catch the glow of this object during its all-sky scan, which lasted from Jan. 2010 to Feb. 2011.

WISE 1828+2650 is located in the constellation Lyra. The blue dots are a mix of stars and galaxies.

This view shows three of WISE's four infrared channels, color-coded blue, green and red, with blue showing the shortest infrared wavelengths and red, the longest.


"The brown dwarfs we were turning up before this discovery were more like the temperature of your oven," says Davy Kirkpatrick, a WISE science team member at the Infrared Processing and Analysis Center at Caltech. "With the discovery of Y dwarfs, we've moved out of the kitchen and into the cooler parts of the house."

The Y dwarfs are in our sun's neighborhood, from approximately nine to 40 light-years away. The Y dwarf approximately nine light-years away, WISE 1541-2250, may become the seventh closest star system, bumping Ross 154 back to eighth. By comparison, the star closest to our solar system, Proxima Centauri, is about four light-years away.

"Finding brown dwarfs near our sun is like discovering there's a hidden house on your block that you didn't know about," says Michael Cushing, a WISE team member at JPL. "It's thrilling to me to know we've got neighbors out there yet to be discovered. With WISE, we may even find a brown dwarf closer to us than our closest known star."

Once the WISE team identified brown dwarf candidates, they turned to NASA's Spitzer Space Telescope to narrow their list. To definitively confirm them, the WISE team used some of the most powerful telescopes and spectrometers on Earth to split apart the objects' light and look for telltale molecular signatures of water, methane and possibly ammonia. For the very coldest of the new Y dwarfs, the team used NASA's Hubble Space Telescope. The Y dwarfs were identified based on a change in these spectral features compared to other brown dwarfs, indicating they have a lower atmospheric temperature.
Northern Illinois   Silverdammit '08 C-14 ABS

"Don't bother me with facts, Son. I've already made up my mind." -Foghorn Leghorn